Symmetry

Algebraic Test of Symmetry

x-axis: If replacing *y* with –*y* produces an equivalent equation, then the graph is *symmetric* with respect to the *x*-axis.

y-axis: If replacing *x* with –*x* produces an equivalent equation, then the graph is *symmetric* with respect to the *y-axis*.

Origin: If replacing x with -x and y with -y produces an equivalent equation, then the graph is *symmetric with respect to the origin*.

Even and Odd Functions

If the graph of a function *f* is symmetric with respect to the *y*-axis, we say that it is an **even function**. That is, for each *x* in the domain of *f*, f(x) = f(-x).

If the graph of a function *f* is symmetric with respect to the origin, we say that it is an **odd function.** That is, for each *x* in the domain of *f*, f(-x) = -f(x).

Transformations

Vertical Translation: $y = f(x) \pm b$

For b > 0,

the graph of y = f(x) + b is the graph of y = f(x)shifted *up b* units; the graph of y = f(x) - b is the graph of y = f(x)shifted *down b* units.

Horizontal Translation: $y = f(x \pm d)$

For d > 0,

the graph of y = f(x - d) is the graph of y = f(x) shifted *right d* units;

the graph of y = f(x + d) is the graph of y = f(x) shifted *left d* units.

Reflections

Across the x-axis: The graph of y = -f(x) is the reflection of the graph of y = f(x) across the x-axis.

Across the y-axis: The graph of y = f(-x) is the reflection of the graph of y = f(x) across the y-axis.

Vertical Stretching and Shrinking: y = a f(x)The graph of y = a f(x) can be obtained from the graph of y = f(x) by

stretching vertically for |a| > 1, or shrinking vertically for 0 < |a| < 1

For a < 0, the graph is also reflected across the *x*-axis.

Horizontal Stretching or Shrinking: y = f(cx)The graph of y = f(cx) can be obtained from the graph of y = f(x) by

shrinking horizontally for |c| > 1, or stretching horizontally for 0 < |c| < 1.

For c < 0, the graph is also reflected across the *y*-axis.

Quadratic Formula

The solutions of $ax^2 + bx + c = 0$, $a \neq 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Vertex of a Parabola

The **vertex** of the graph of $f(x) = ax^2 + bx + c$ is

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

We calculate the *x*-coordinate

We substitute to find the *y*-coordinate

The Algebra of Functions

The Sums, Differences, Products, and Quotients of Functions

If f and g are functions and x is the domain of each function, then

(f + g)(x) = f(x) + g(x) (f - g)(x) = f(x) - g(x) $(fg)(x) = f(x) \cdot g(x)$ (f/g)(x) = f(x)/g(x), provided $g(x) \neq 0$

Composition of Functions

The composition function $f \circ g$, the composition of f and g, is defined as

 $(f\circ g)(x)=f\bigl(g(x)\bigr),$

where x is in the domain of g and g(x) is in the domain of f.

One-to-One Functions

A function *f* is **one-to-one** if different inputs have different outputs—that is,

if $a \neq b$, then $f(a) \neq f(b)$

Or a function *f* is **one-to-one** if when the outputs are the same, the inputs are the same—that is,

if
$$f(a) = f(b)$$
, then $a = b$

Horizontal-Line Test

If it is possible for a horizontal line to intersect the graph of a function more than

once, then the function is not one-to-one and

its inverse is *not* a function.

Obtaining a Formula for an Inverse

If a function *f* is one-to-one, a formula for its inverse can generally be found as follows:

- **1.** Replace f(x) with y.
- **2.** Intercharge *x* and *y*.
- **3.** Solve for *y*.
- 4. Replace y with $f^{-1}(x)$.

Exponential and Logarithmic Functions

The function $f(x) = a^x$, where x is a real number, a > 0 and $a \ne 1$, is called the **exponential function,** base a.

We define $y = \log_a x$ as that number y such that $x = a^y$, where x > 0 and a is a positive constant other than 1.

Summary of the Properties of Logarithms

Product Rule: $\log_a MN = \log_a M + \log_a N$ Power Rule: $\log_a M^p = p \cdot \log_a M$ Quotient Rule: $\log_a \frac{M}{N} = \log_a M - \log_a N$ Change-of-Base: $\log_b M = \frac{\log M}{\log b}$

F*ormula*

Other Properties:

$$\log_a a = 1$$
 $\log_a 1 = 0$
 $\log_a a^x = x$ $a^{\log_a x} = x$

Quick Review Sheet Math 1314

Solving Exponential and Logarithmic Equations

Base-Exponent Property For any a > 0, $a \neq 1$,

 $a^x = a^y \leftrightarrow x = y$

Property of Logarithmic Equality For any M > 0, N > 0, a > 0, and $a \neq 1$,

 $\log_a M = \log_a N \leftrightarrow M = N$

A Logarithm is an Exponent

$$\log_a x = y \leftrightarrow x = a^y$$

Polynomial Functions

Even and Odd Multiplicity

If $(x - c)^k$, $k \ge 1$, is a factor of a polynomial function P(x) and $(x - c)^{k+1}$ is not a factor of P(x) and :

- k is odd, then the graph crosses the x-axis at (c, 0);
- *k* is even, then the graph is tangent to the *x*-axis at (*c*, 0)

The Intermediate Value Theorem

For any polynomial function P(x) with real coefficients, suppose that for $a \neq b$, P(a) and P(b) are of opposite signs. Then the function has a real zero between *a* and *b*.

The Remainder Theorem

If a number c is substituted for x in the polynomial f(x), then the result f(c) is the remainder that would be obtained by dividing f(x) by x - c. That is, if $f(x) = (x - c) \cdot Q(x) + R$, then f(c) = R.

The Factor Theorem For a polynomial f(x), if f(c) = 0, then x - c is a factor of f(x).

The Fundamental Theorem of Algebra Every polynomial function of degree *n*, with $n \ge 1$, has at least one zero in the system of complex numbers.

Nonreal Zeros: a + bi and a - bi, $b \neq 0$ If a complex number a + bi, $b \neq 0$, is a zero of a polynomial function f(x) with real coefficients, then its conjugate, a - bi, is a also a zero.

Irrational Zeros: $a + c\sqrt{b}$ and $a - c\sqrt{b}$, b is not a perfect square

If $a + c\sqrt{b}$ and $a - c\sqrt{b}$, *b* is not a perfect square, is a zero of a polynomial function f(x) with rational coefficients, then its conjugate, $a - c\sqrt{b}$, is also a zero. For example, if $-3 + 5\sqrt{2}$ is a zero of a polynomial function f(x), with rational coefficients, then its conjugate, $-3 - 5\sqrt{2}$, is also a zero.

The Rational Zeros Theorem

Let $P(x) = a_n x^n + a_{n-1} x^n + \dots + a_1 x + a_0$, where all the coefficients are integers. Consider a rational number denoted by p/q, where pand q are relatively prime. If p/q is a zero of P(x), then p is a factor of a_0 and q is a factor of a_n .

Ex. $3x^4 - 11x^3 + 10x - 4$ <u>Possibilities for p (a_0)</u> <u>Possibilities for q (a_n)</u>: $\frac{\pm 1, \pm 2, \pm 4}{\pm 1, \pm 3}$

Possibilities for p/q: 1,-1,2,-2,4,-4, $\frac{1}{3}$, $\frac{-1}{3}$, $\frac{2}{3}$, $\frac{-2}{3}$, $\frac{4}{3}$, $\frac{-4}{3}$

Quick Review Sheet Math 1314

Descartes' Rule of Signs

Let P(x), written in descending or ascending order, be a polynomial function with real coefficients and a nonzero constant term. The number of positive real zeros of P(x) is either:

- 1. The same as the number of variations of sign in P(x), or
- 2. Less than the number of variations of sign in P(x) by a positive even integer.

The number of negative real zeros of P(x) is either:

- 3. The same as the number of variations of sign in P(-x), or
- 4. Less than the number of variations of sign in P(-x) by a positive even integer.

A zero of multiplicity *m* must be counted *m* times.